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Abstract

A quantization procedure fi)r the electromagnetic field in a rectangular cavity with perfect

conductor wMls is pr(_ented, when: a d(x'omposition formula of the field plays an e_sentiaJ

role. All vector mode functions are obtained by using the decomposition. After expand-

ing the field in terms of the vector mode functions, we get the quantized electromagnetic
tlamiltonian.

1 Introduction

Re(:ently we have carried out the field quantization in several rectangular cavities using the vez.tor

mc_ie fimctions [1]. The vector mode flmctions have been obtained with the help of an orthogonal

matrix, tlowew_x, the procedure dew_.loped there has not been applicable to other cavities in a

straightforward manner.

To overco[m _,the abow: difficulty, we have present(._] another quantization scheme for the field

in a (:ir(:ular cylindrical cavity [2]. All vector mode functions haw _, been obtained by using a

dccomp(_sition formula derived from Maxwell's equations directly. This method is more general

than before., because it is also applicable to rectangular and spherical cavities.

In this paper, we applied the above, method to a rectangular cavity with perfect conducting

walls. Then spontaneous emission of an atom inside the cavity is calculated.

2 Decomposition of Electromagnetic Fields

In t,his section, we deriw _.the. de(:omposition formula for the field in the Cartesian coordinates. We

shall use this n_ult in l)erforming the fieht quantization in a rectangular cavity in Sec. 3.

Maxwell's _luations for the electric field E and the magnetic field B in free space are given by

V-E 0, V-B 0, and

V×E ! 0tB 0, V×B-_0tE: 0, (1)

where c is t,he w_locity of light in free space and i)t 0/0/.

The eh_:tromagnetic field E and B can be written in the Cartesian coordinates (x, y, z) as

E ET t E_, B Br t B_, where ET e_E_. t eyE_ is the transverse component of the field
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and Ez ezE_. llere e_, ey, an(i e_ are the unit, v_tors in the x, y, and z directions, respectively.

For simplicity, the derivative, with respect to, for example, x is described as O/cOx cO_.

Since Vz x Ez O, the first equation in (1) gives

b_B_ --VT × ET, 0_BT --VT X Ez - V_ x ET. (2)

Similarly, the second equation in (1) leads to

_-0,E_ = VT X BT, _--0tET - VT X B, + V_ x BT. (3)

Equations (2) and (3) give

1

ATE :: --V × V × Ez + V x 0,B,, ATB --_V X 0,E, - V x V x B,. (4)

3"o rewrite Eq. (4), we must decompose the components E, and B, into two parts. Suppose

that the field is in a finite region. Let. us expazld E_ and B_ in terms of a certain complete system

of functions with mode s:

E_(r,l) y_(E,,(r,/) +c.c.), Bz(r,t) y_(B_,(r,t) +c.c.), (5)

where E_.Cr, l) Ez_(r)e -i_'lt and Bz.(r,/) = /3..(r)e -_'2t. Here c0.o (w_o > 0, a ::: 1,2) is

determined by using given boundary conditions. Since E. and B. satisfy the wave equation, the

components E_, and Bz. satisfy the Helmholts equations:

k2 2 rAE_, : - .,E_,, /_B_ =-k.2B_. ( ), (6)

where k.2,. : wL/c _. We assume that the component_ satisfy

E (7)

where h_ is determined by the boundary conditions. Then we have two dimensional Helmholtz

equations:

/kTE,,(r) :-g2,E,,(r), /XTB_,(r)--g22B_,(r), (8)

where g_s_, -- k2sa - h2-

Here we define two functions F¢ from Ez, and B_, with g_ # 0 as

+c.c.l lk ,Cr)e +c.c.J, (9)

where

F., = E.,Ig_,, Fo2-- B..,Ig;_, (g2 _ 0). (10)

The functions F, and their components F_, satisfy the same equations as E, and E_,, respectively.

The component ,¢_, is a solution of the Poisson equation. On the other hand, if there is a component

E,, or B,, with g2 = O, Eq. (8) reduces to two dimensional Laplace equation.
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The fun(:tions A.rk_, satisfy

(11)

l lere define t'_ and Boz as

Eoz Ez ! /_TFt : _ E,._, Boz B_ J, /XTF2 = _ B_,, (12)

_, o _=-o

which satisfy /_TPJOz : 0 and /XTBo_ 0. Then we have useful formulas for E_ and B,:

Ez -LTI_i + Eo_, B_ = -ArF2 + Boz. (13)

Using Eq. (13) and defining F. as F. ezF,, we can rewrite Eq. (4) as

AT(E-VxV×F,_ V×0tF2) =-V×V×Eoz+V×0tBo_, (14)

( 1 ) 1/k v B - _V × 0tF 1 - V x V × F2 -: -_V x 0tEo. - Y × V x Bo_, (15)

where Eo: e:t';oz and Bo: :- e:Bo:. Define Eo and Bo as the quantities in the parentheses at

the left hand side in Eqs. (14) and (15), r_p_tively. The results of this section is summarized in

the following the_)rem.

Theorem 1: If the components E_, and B_ satisfy Eq. (7), the field can be decomposed into

three components as follows:

E VxVXFl-VX0tF2 +Eo,

where Eo and Bo satisfy

/_TE0 --V X V X Eo_ + V x 0tBoz,

B: _V x0tF1 + V x V x F2 +Bo,

1

/kTno - ---_V X Otnoz - V X V X BOz.

(16)

(17)

Theorem 1 plays a central role in performing the field quantization in this paper. It is worth

emphasizing that cacti term in Eq. (16) is a solution to Maxwell's equations.

3 Vector Mode Functions and Field Quantization

The cavity wc treat here is enclosed by rectangular walls having sides L:, Lv, and L: in the x, y,

and z directions, respectively: 0 < x < L:, 0 < y < Ly, and 0 < z < L:. We assume that the

cavity has perfectly conducting walls. The tangential component of the electric field EIt_ and the

normal component of the magnetic field Bl=o_m must accordingly vanish at the boundaries of the

cavity.
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The al)(wc boundary condition redu(:_ to that for tile z components

Ez 0, 0_Bz 0, (x 0, L_),

Ez o, O.Bz O, (y- O, L,),
Bz O, O.E.- O, (z :: 0, L.).

(18)
(19)
(20)

The solution to the Helmholts equation (6) for the components E_. and Bz. under the above

boundary conditions is given by

E,.(r, t) C.l(t)sin(twx/L,)sin(mlry/L,)coo(nnz/i,),

B_.(r, t) - Cs2( t ) cos( _Trx/ L.) coo(m_rz/ Lz) sin(nlrz/ L_), (21)

where the mode index is s : (_, m, n) (e, m, n - 0, +l, +2,--.).

b¥om the solution (21) we have

g_ =- g_ (&rlL_) 2 4 (m_/L,) 2,

k_ -- k_ -: (e;r/L_) 2 ! (m./L,) 2 _ (nx/L_) 2. (22)

(k)nsequently, we can use Theorem 1 in the preceding section. Although it follows from Eq. (22)

that g_ > 0, we can prove that _o > 0, which results from the following lemma. We omit its

proof.

Lemma: lE0, B0 0 and g_o > 0. As a result, the term with _ - m 0 in Eq. (21) cannot be

used.

Let us next obtain the functions F_, whose definitions axe given in Eqs. (9) and (10). That is,

the functions are given by

Ez.(r,t) .i_l (r, t) - =' v "-,oo (t)¢.,(r),

F.z(r,t)- B_,(r, t) hw_2_og_ -- i ao2(t)¢o2(r), (23)

where woo = w. and we have introduced a_o(t) - ao_(O)e -_°t and ¢_o given by

¢.,(r,t) =- c_, sin( £_rx/ L_) sin(mrry/ L,) coo(n_rz/ L_), (24)

¢.2 (r, t) = c_2 co0(&rx/L,) coo(m_ry/L,)sin(nlrz/L_), (25)

with c., -- 181(V_g_)] '/2 and c.2 = [81(Vw_g_)] '/2. The functions ¢.,, has the orthonormality

property

drlb*(r)_b.,_(r) =  lc..I v_.,, (26)

where, f¢ dr f_,ity dxdydz and V is the cavity volume. Here the quantity cos x in Eqs. (24) and

(25) must be changed to l/v/2 when x = 0.

Substituting the functions Fo in Eq. (23) into E in Eq. (16), we find

E(r,t) i_-_.ohw_e'o[a'°(t)u_°(r)-a*'°(t)u*(r)]' (27)
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where the vector mode flmctions u_, are given by

U_l V x V x ez_l, us2 : /wsV x ez_bs2. (28)

The vex:tor mode. functions satisfy V -u_. 0, (A ! k2o)u.. 0, and at, the boundaries u.olt=

0, V × u_,iuo_ 0. They also satisfy the orthonormality property needed for quantization:

L dr u_(r)- u.,_,(r) :/_.,, 6_,. (29)

To get the quantized field, the functions a_(t) are regarded as annihilation operators satisfying

the commutation relation [a_(t), a_,_,(t)] /_,,,6_,. Then we get the following theorem.

Theorem 2: The quantized field and the Hamiltonian are given by

E(r,t) :: i_-_ a_,(t)u_o(r)-a_(t)u_,(r)], (30)
B_r

_rg_____, [a_,(t)v x u_,(r) + a_a(t)V x u_,(r)], (31)B(r, t)

ttn _ 2 "
40r

4 Spontaneous Emission

As an application, we consider the transition rates of an atom in the cavity, using the dipole

approximation. The |tamiltonian is given by H - HA + HR + Ht, where HA is the free Hamiltonian

for the atom, Ha for the field which is given in Eq. (32), and HI - eD. E(R) (-eD: the total

electric dipole moment of the atom; R (X, Y, Z): the position of the atom).

At t = 0, the atom is in an energy state [i0 > (with energy E_o) and the field is in the vacuum.

Then the probability per second of finding the atom in a state (with energy E_) at sufficiently

large time t is given by

e27r sin(a). -- Wo)t

w .- eo---hy] lu_,(R)- < iolD[i > IZW'Tr(w. _ wo) '
(33)

where ttw0 - E,o - E,.

Let us take the average of the coordinates Y and Z and take L= --* oo. The transition rates

w_ and w_ vanish (w, indicates the rate where the dipole moment is along with the i direction).

The rate w= is given by

6
- - m/G,),w=/wo _, _--_(1,,, ml/(li)-l/lo(1 I I

(34)

where _, woL,/crr, _ 1/2, wo -: < ioiDIi > I wo3/(3 hEoC3),0(x) = 1 (x > o), and
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O(x) 0 (x < 0), which is shown in FIG. 1.
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FIG. 1. Transition rate w= for Lz --' oo, where the dipole moment is along with

the x dir_tion.

Setting here w0 1013 Hz, we have L= - 4.7 × 10 -2 mm, so that the cavity is quite narrow.

Also, FIG. 1 shows that the transition is forbidden when _y < 1, i.e., Ly < 9.4 × 10 -2 mm., where

the cavity is a thin tube in this case.

5 Conclusions

The quantization for the field in the cavity has been performed as follows: obtain the decom-

position formula (16) in the Cartesian coordinates; solve the Helmholts equations (6) for the

components Ez, and Bz, under the boundary conditions; determine the functions F_, substitute

them into the decomposition formula (16), and obtain the vector mode functions satisfying the

orthonormality property (29); then we arrive at the quantized field and Hamiltonian. In the whole

proc_ss of quantization, the decomposition formula in Theorem 1 plays an important role.
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